

Oliver Stephenson, Tobias Köhne, Eric Zhan, Brent Cahill, Sang-Ho Yun, Zachary Ross, Mark Simons

Second AI and Data Science Workshop for Earth and Space Sciences — February 9–11, 2021

Feedback form: https://bit.ly/20kRT41

☑ oliver.stephenson@caltech.edu

Caltech

Stephenson et al., IEEE Transactions on Geoscience and Remote Sensing (in revision)

Satellite radar data has key advantages

A 'Golden Age' of Satellite Radar

"A paradigm shift is...taking place in spaceborne SAR systems" — Alberto Moreira (2014), German Aerospace Center

Currently acquiring data:

Sentinel 1-A/B

Image: ESA

Launching in the next few years:

NISAR

Image: NASA

ALOS-4

Image: JAXA

How can we apply machine learning to large quantities of satellite based radar data to rapidly and reliably map damage in the event of major disasters?

Iran-Iraq Earthquake – Mw 7.3, November 2017

Look at changes between two SAR images: Interferometric Synthetic Aperture Radar (InSAR)

Small changes in the reflected radar waves means high coherence

Large changes in the reflected radar waves means low coherence

InSAR coherence is a measure of surface change

InSAR coherence is a measure of surface change

We can get more information from sequential coherence

Each pixel has a coherence time series

How can we reliably detect anomalies in coherence time series?

How can we reliably detect anomalies in coherence time series?

How can we reliably detect anomalies in coherence time series?

We can use Recurrent Neural Networks (RNNs) for anomaly detection

- Input sequence $\{x_1, x_2, ..., x_T\}$
- Hidden state h_t summarizes the sequence up to time t
- Compute h_t from x_t and h_{t-1} , then predict x_{t+1} from h_t
- Train on many time series to make the 'best' prediction

• Total of ~250,000 trainable parameters

Train an RNN on many pre-event coherence time series

Train on ~3,000,000 coherence time series from the geographic region in which we're doing damage detection

Train an RNN on many pre-event coherence time series

Exclude the co-event coherence during training. We don't want to train on the anomaly!

Use the trained RNN to forecast the co-event coherence

At each step, make a Gaussian forecast for the coherence

Compute the deviation from the forecast to detect anomalies

Overall Method Summary

Optical data:
Google/CNES/Airbus

The 2019 Ridgecrest Earthquakes

Photos: USGS

Photos: USGS

Key Points

- Synthetic aperture radar (SAR) can see through clouds, day and night, and data is becoming increasingly available
- 2. We can frame the damage mapping problem as one of detecting anomalies in sequential SAR observations of the ground
- Our approach uses Recurrent Neural Networks to forecast the coevent coherence and compare with observations
- 4. These damage maps can be used to direct emergency response